

Strategies for the Implementation of a Sense and Avoid System for Unmanned Aerial Vehicles

Jang-Bum Park Institute of Aerospace Systems >UAV & Laser Range Finder

Simulation Model

➤ Strategies

Conclusions & Outlook

UAV & Laser Range Finder

Figure 1. UAV P 200

Figure 2. Opti-Logic RS400^a

Power	7~9 Volts DC
Protocol	RS232
Laser Wavelength	905 nm +/- 10 nm (IR)
Laser Divergence	5 x 5 cm at 100 m
Accuracy	+/- 1 m
Measuring Range	max. 360 m
Measuring Frequency	10 ~ 200 Hz

Table 1. Specification of the laser range finder RS 400

^a http://www.opti-logic.com/industrial_rangefinders.htm

>UAV & Laser Range Finder

Simulation Model

Strategies

Conclusions & Outlook

Simulation Model

Figure 3. Structure of the Simulation Model

➢ UAV & Laser Range Finder

Simulation Model

➤ Strategies

Conclusions & Outlook

>Adapted Flight Path Generation

Distance Transformation

> A* Algorithm

Path Generation by means of Bézier curves

$$P(v) = (1-v)^3 b_0 + 3(1-v)^2 v b_1 + 3(1-v)v^2 b_2 + v^3 b_3 , v \in [0,1]$$

Figure 4. Exemplary Generation of a Flight Path

Technische Universität Braunschweig

8

- Manoeuvre for avoiding obstacles
 - Depending on the detected distance D toward the obstacle

Category	D [m]	d θ [°]
Ι	$300 \leq D$	5
II	$150 \le D < 300$	10
III	D < 150	15

 Table 2. Category for various manoeuvres

Figure 5. Manoeuvre depending on detected distances

- Manoeuvre for avoiding obstacles
 - Depending on the curvature κ of the curve

 Table 3. Different cases of curvatures

- > In order to generate an "Occupancy Map"
- > Widely used in image processing (medicine, robotics)
- Can be constructed by means of "Metrics" and "Distance Mask"
 - Chessboard metric:

$$D_{chess}$$
 $(x_1, y_1, y_2) = \max |x_1 - x_2|, |y_1 - y_2|$

• City-Block metric:

$$D_{city}$$
 (x_1, y_1) $(x_2, y_2) = |x_1 - x_2| + |y_1 - y_2|$

• Euclidean metric:

$$D_{euclid}$$
 (x_1, y_1) $(x_2, y_2) = \sqrt{(x_1 - x_2)^2 + (x_1 - y_2)^2}$

Figure 7. Scheme of Distance Transformation

Distance Transformation

œ	ω	œ	ω	œ				œ	œ	œ	œ	ω
ω	œ	œ	ω	co				œ	œ	œ	œ	ω
œ	ω	0				-	2 414	0.000	00	0	1	œ
œ	œ	œ	2,82	8 2,4	14	2	2,414	2,828	- 00	œ	œ	œ
œ	œ	œ	2,41	.4 1,4	14	1	1,414	2,414	8	œ	ω	œ
			2	1	L	0	1	2				
œ	œ	8	2,41	4 1,4	14	1	1,414	2,414	60	œ	œ	œ
œ	œ	œ	2,82	8 2,4	14	2	2,414	2,828		co	60	œ
œ	1	0	1	2	L			CO	 ^{co}	0	1	2
œ	1,414	1	1,414	2,414				œ	1,414	1	1,414	2,414
2,828	2,414	2	2,414	2,828				2,828	2,414	2	2,414	2,828

Applying different metrics

The darker the region in the occupancy map,

the higher the danger of collision with obstacles

A* Algorithm

- In order to find the best (shortest) path to the goal
- > Applied in e.g. automobile navigation
- Extending the path with a "cost function"

Figure 8. Distance Mask

k

A* Algorithm

Step 1

Enlist the starting node S with its neighbours and predecessors in the "open list"

1~ 6	114		100		94		л	-	
	14	100	10 90		14	80	4	5	Ю
7 ~ 12	100		G		80		10	44	10
	10	90	2		10	70	10	11	12
13 ~ 18	s	94	80		74				
	14	80	10	10 70		60			
19 ~ 24									
25 ~ 30									
31 ~ 36									G

Q	F(k)	G(k)	H(k)	Р
1	114	14	100	S
2	100	10	90	S
3	94	14	80	S
7	100	10	90	S
S	-	-	-	-
9	80	10	70	S
13	94	14	80	S
14	80	10	70	S
15	74	14	60	S

Figure 9. A* Algorithm

A* Algorithm

Step 2 _____

Searching for the node having the lowest F-value (e.g. node 15) and enlist in the "closed list"

Step 3 _____

Calculating the F-values of the neighbours of the actual node (e.g. node 15)

Step 4 _____

Repeating the steps for the new actual node (e.g. node 16)

Closed	List

Q	F(k)	G(k)	H(k)	Р
S	-	-	-	-
15	74	14	60	S
16	74	24	50	15

Figure 9. A* Algorithm (continued)

	14	10	00	9	4						
14	100	10	90	14	80						
100		G		8	0	8	8	8	8		
10	90		` \	10	70	28	60	38	50		
s	4	8	0	74		7	4	7	4	8	2
14	80	10	70	14	60	24	50	34	40	52	30
		8	8	9	94		6	8	6	8	
		28	60	24	70			38	30	48	20
								6	8	6	2
								48	20	52	10
								7	6	6	2
								66	10	62	0

Closed List

Q	F(k)	G(k)	H(k)	Р
S	-	-	-	-
15	74	14	60	S
16	74	24	50	15
23	68	38	30	16
30	62	52	10	23
36 = G	62	62	0	30

Path : $S \rightarrow 15 \rightarrow 16 \rightarrow 23 \rightarrow 30 \rightarrow 36 = G$

Figure 9. A* Algorithm (continued)

Distance Transformation & A* Algorithm

Figure 10. Distance Transformation and A* Algorithm for $\delta = 0.35$

Technische Universität Braunschweig

19

Distance Transformation & A* Algorithm

L = 1232 m

➤ UAV & Laser Range Finder

Simulation Model

➤ Strategies

Conclusions & Outlook

- > Adaptive Flight Path Generation by means of *Bézier curves* provides a possible solution for the implementation of a "Sense & Avoid" system
- Distance Transformation and A* Algorithm are appropriate for constructing a feasible trajectory
- Investigation of the feasibility in implementing the above mentioned algorithms
- > Validation of the simulation with flight tests

